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A Brief History of Types

- Let’s rewind back to 300 BC...

- Ancient Greek mathematician Euclid studied geometry, and published
his work in Elements [Euclid, c. 300 BC].

- His work on geometry relied on five axioms; Euclid’s postulates.

- Life was good...

- ...for approximately 2000 years.

- In 1868, Italian mathematician Eugenio Beltrami proved that Euclid’s
parallel postulate is independent of the other axioms.

- Is Euclidean geometry consistent?

- Is anything we’ve done so far correct?
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A Brief History of Types

- German mathematician Gottlob Frege published his Begriffschrift in
1879

- Frege identified issues with prior work on logic and made a proposal:

- There’s some basic rules we should expect of logic: consistency,
completeness, and decidability.

1) Consistency: you cannot prove contradictory propositions
2) Completeness: every proposition is either provable or refutable
3) Decidability: every proposition can be tested and every proof can

be derived
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A Brief History of Types

- The year is 1901.

- Along comes British mathematician Bertrand Russell.

- Russell asks a simple question:
Does the set of all sets that do not contain themselves contain
itself?

x := {s |s ∉ s} x ∈ x?

- Modern mathematics says, "Trick question! That set isn’t definable!"

"Unless it is, in which case: trick question! It’s not a set, it’s a proper class!"

- Is the question well-defined? Is it complete? Are we missing
something?

- There’s a rush to solve this problem; to find a complete, consistent
and decidable basis for all mathematics.
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A Brief History of Types

- It gets worse.

- Theorem: There exists mathematical objects which cannot be
explicitly calculated or described.

- Theorem: There exists theorems in Peano arithmetic that cannot be
proven with Peano arithmetic.

- It gets even worse.

- Along comes Austrian-Hungarian mathematician Kurt Gödel.

- Gödel publishes his incompleteness theorems.
1) If a system of logic is consistent, then it is incomplete.
2) A system of logic cannot prove it’s own consistency.
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A Brief History of Types

- So why bother?

- Russell demonstrated that naïve set theory is inconsistent;
unrestricted set specification leads to contradiction.

- These questions led to the development of Zermelo-Frankael Set
Theory (ZF) and the study of powerful tools such as the Axiom of
Choice.

- Many other systems and bases of logic were studied and developed
during this time.

- Russell’s own proposal for solving this problem was a theory of types.
(1908)

- Every mathematical object has a ‘type’, and these types form a
hierarchy. Each type and its objects can be constructed only using
subtypes.
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Introducing Lambda Calculus

- In the 1930s, American mathematician Alonzo Church introduced
lambda calculus.

- What is f (x)? What does f (1) mean, if we only have f (x) defined?

- f (1) means to take all the xs in f (x) and replace them with 1s.

- Church formalised by introducing 𝜆 and the notion of reduction

f (x) = x2 + 2x + 3 ⇒ f := 𝜆x .(x2 + 2x + 3)
1 + 1 = 2
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Introducing Lambda Calculus

- In the 1930s, American mathematician Alonzo Church introduced
lambda calculus.

- What is f (x)? What does f (1) mean, if we only have f (x) defined?

- f (1) means to take all the xs in f (x) and replace them with 1s.

- Church formalised by introducing 𝜆 and the notion of reduction

f (x) = x2 + 2x + 3 ⇒ f := 𝜆x .(x2 + 2x + 3)
1 + 1 ≠ 2 ⇒ 1 + 1 ⇀∗ 2
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Introducing Lambda Calculus

- As an abstract calculus, lambda calculus is a universal model for
computation.

- It’s a powerful enough system to represent arithmetic and logical
operations.

- As a logic, lambda calculus was shown by Kleene and Rosser to be
inconsistent.
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Examples of Lambda Calculus

- Consider the function
𝜔 := 𝜆x .(xx)

- Let’s consider some examples:

- 𝜔(2) ⇀ (𝜆x .(xx)) (2) ⇀ (xx) [2/x] ⇀ 2(2)
- 𝜔(𝜔) ⇀ (𝜆x .(xx)) (𝜔) ⇀ (xx) [2/x] ⇀ 𝜔(𝜔)
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Simply Typed Lambda Calculus

- How did Church solve this problem? Type theory!

- Church’s Simply Typed Lambda Calculus restricted lambda calculus
to only those terms which could be typed.

- 2 : N (+) : N→ N→ N
- d := 𝜆(x : N).2x

- d (2) ⇀∗ 4

- d (”apple”)?
- 𝜔 := 𝜆x .(xx) can’t be typed.

- This restricted lambda calculus is logically consistent.
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The Curry-Howard Correspondence

- By 1970, Mathematician Haskell Curry and logician William Alvin
Howard realise something remarkable.

- Certain proof systems, such as natural deduction, behave kind of like
an intuitionistic version of lambda calculus.

- This leads to the Curry-Howard Correspondence: that the act of
writing a mathematical proof has a one-to-one correspondence with
the act of writing a computer program.

- If A and B are propositions, then I may write a proof p that A → B.

- If A and B are types, then I may describe a function f : A → B that
takes in an object of type A and returns an object of type B.

- If we interpret propositions as types, then writing a proof is the same
as describing a function.
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Proof Assistants

- The Curry-Howard Correspondence has lead to the development of
proof assistants.

- Proof assistants are advanced programming languages.

- You can formalise mathematics and write up your proofs.

- The proof assistant can verify your proof and ensure that you are
correct.

- Mathematicians like Kevin Buzzard and Terence Tao are pushing
proof assistants with cutting-edge research.
[Buzzard, 2024, Tao, 2024].
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Programming Languages

- In fact, type theory has worked its way into every popular
programming language.

- It stops you, the programmer, from making mistakes.

- Type-driven programming paradigms help to prevent bugs.
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In Conclusion

- Type theory was developed as an alternative to set theory.

- Type theory has bloomed into something new and exciting.

- Type theory is an active area of research.

- We’re trying to get students more involved with type theory!

Proof and Programs Club @ RHUL

Thank you for your time!
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