
1/17

An Introduction to Type Theory

Felix Bradley

Department of Computer Science
Royal Holloway, University of London

28 February 2024

Felix Bradley Intro to Type Theory 28 February 2024



2/17

Presentation Overview

1 A Brief History of Types

2 Simply Typed Lambda Calculus

3 The Curry-Howard Correspondence

4 Summary

Felix Bradley Intro to Type Theory 28 February 2024



3/17

A Brief History of Types

- Let’s rewind back to 300 BC...

- Ancient Greek mathematician Euclid studied geometry, and published
his work in Elements [Euclid, c. 300 BC].

- His work on geometry relied on five axioms; Euclid’s postulates.

- Life was good...

- ...for approximately 2000 years.

- In 1868, Italian mathematician Eugenio Beltrami proved that Euclid’s
parallel postulate is independent of the other axioms.

- Is Euclidean geometry consistent?

- Is anything we’ve done so far correct?

Felix Bradley Intro to Type Theory 28 February 2024



4/17

A Brief History of Types

- German mathematician Gottlob Frege published his Begriffschrift in
1879

- Frege identified issues with prior work on logic and made a proposal:

- There’s some basic rules we should expect of logic: consistency,
completeness, and decidability.

1) Consistency: you cannot prove contradictory propositions
2) Completeness: every proposition is either provable or refutable
3) Decidability: every proposition can be tested and every proof can

be derived

Felix Bradley Intro to Type Theory 28 February 2024



5/17

A Brief History of Types

- The year is 1901.

- Along comes British mathematician Bertrand Russell.

- Russell asks a simple question:
Does the set of all sets that do not contain themselves contain
itself?

x := {s |s ∉ s} x ∈ x?

- Modern mathematics says, "Trick question! That set isn’t definable!"

"Unless it is, in which case: trick question! It’s not a set, it’s a proper class!"

- Is the question well-defined? Is it complete? Are we missing
something?

- There’s a rush to solve this problem; to find a complete, consistent
and decidable basis for all mathematics.

Felix Bradley Intro to Type Theory 28 February 2024



6/17

A Brief History of Types

- It gets worse.

- Theorem: There exists mathematical objects which cannot be
explicitly calculated or described.

- Theorem: There exists theorems in Peano arithmetic that cannot be
proven with Peano arithmetic.

- It gets even worse.

- Along comes Austrian-Hungarian mathematician Kurt Gödel.

- Gödel publishes his incompleteness theorems.
1) If a system of logic is consistent, then it is incomplete.
2) A system of logic cannot prove it’s own consistency.

Felix Bradley Intro to Type Theory 28 February 2024



7/17

A Brief History of Types

- So why bother?

- Russell demonstrated that naïve set theory is inconsistent;
unrestricted set specification leads to contradiction.

- These questions led to the development of Zermelo-Frankael Set
Theory (ZF) and the study of powerful tools such as the Axiom of
Choice.

- Many other systems and bases of logic were studied and developed
during this time.

- Russell’s own proposal for solving this problem was a theory of types.
(1908)

- Every mathematical object has a ‘type’, and these types form a
hierarchy. Each type and its objects can be constructed only using
subtypes.

Felix Bradley Intro to Type Theory 28 February 2024



8/17

Introducing Lambda Calculus

- In the 1930s, American mathematician Alonzo Church introduced
lambda calculus.

- What is f (x)? What does f (1) mean, if we only have f (x) defined?

- f (1) means to take all the xs in f (x) and replace them with 1s.

- Church formalised by introducing 𝜆 and the notion of reduction

f (x) = x2 + 2x + 3 ⇒ f := 𝜆x .(x2 + 2x + 3)
1 + 1 = 2

Felix Bradley Intro to Type Theory 28 February 2024



9/17

Introducing Lambda Calculus

- In the 1930s, American mathematician Alonzo Church introduced
lambda calculus.

- What is f (x)? What does f (1) mean, if we only have f (x) defined?

- f (1) means to take all the xs in f (x) and replace them with 1s.

- Church formalised by introducing 𝜆 and the notion of reduction

f (x) = x2 + 2x + 3 ⇒ f := 𝜆x .(x2 + 2x + 3)
1 + 1 ≠ 2 ⇒ 1 + 1 ⇀∗ 2

Felix Bradley Intro to Type Theory 28 February 2024



10/17

Introducing Lambda Calculus

- As an abstract calculus, lambda calculus is a universal model for
computation.

- It’s a powerful enough system to represent arithmetic and logical
operations.

- As a logic, lambda calculus was shown by Kleene and Rosser to be
inconsistent.

Felix Bradley Intro to Type Theory 28 February 2024



11/17

Examples of Lambda Calculus

- Consider the function
𝜔 := 𝜆x .(xx)

- Let’s consider some examples:

- 𝜔(2) ⇀ (𝜆x .(xx)) (2) ⇀ (xx) [2/x] ⇀ 2(2)
- 𝜔(𝜔) ⇀ (𝜆x .(xx)) (𝜔) ⇀ (xx) [2/x] ⇀ 𝜔(𝜔)

Felix Bradley Intro to Type Theory 28 February 2024



12/17

Simply Typed Lambda Calculus

- How did Church solve this problem? Type theory!

- Church’s Simply Typed Lambda Calculus restricted lambda calculus
to only those terms which could be typed.

- 2 : N (+) : N→ N→ N
- d := 𝜆(x : N).2x

- d (2) ⇀∗ 4

- d (”apple”)?
- 𝜔 := 𝜆x .(xx) can’t be typed.

- This restricted lambda calculus is logically consistent.

Felix Bradley Intro to Type Theory 28 February 2024



13/17

The Curry-Howard Correspondence

- By 1970, Mathematician Haskell Curry and logician William Alvin
Howard realise something remarkable.

- Certain proof systems, such as natural deduction, behave kind of like
an intuitionistic version of lambda calculus.

- This leads to the Curry-Howard Correspondence: that the act of
writing a mathematical proof has a one-to-one correspondence with
the act of writing a computer program.

- If A and B are propositions, then I may write a proof p that A → B.

- If A and B are types, then I may describe a function f : A → B that
takes in an object of type A and returns an object of type B.

- If we interpret propositions as types, then writing a proof is the same
as describing a function.

Felix Bradley Intro to Type Theory 28 February 2024



14/17

Proof Assistants

- The Curry-Howard Correspondence has lead to the development of
proof assistants.

- Proof assistants are advanced programming languages.

- You can formalise mathematics and write up your proofs.

- The proof assistant can verify your proof and ensure that you are
correct.

- Mathematicians like Kevin Buzzard and Terence Tao are pushing
proof assistants with cutting-edge research.
[Buzzard, 2024, Tao, 2024].

Felix Bradley Intro to Type Theory 28 February 2024



15/17

Programming Languages

- In fact, type theory has worked its way into every popular
programming language.

- It stops you, the programmer, from making mistakes.

- Type-driven programming paradigms help to prevent bugs.

Felix Bradley Intro to Type Theory 28 February 2024



16/17

In Conclusion

- Type theory was developed as an alternative to set theory.

- Type theory has bloomed into something new and exciting.

- Type theory is an active area of research.

- We’re trying to get students more involved with type theory!

Proof and Programs Club @ RHUL

Thank you for your time!

Felix Bradley Intro to Type Theory 28 February 2024



17/17

References

Buzzard, K. (2024).
How to prove fermat’s last theorem.
Cambridge, UK. Faculty of Mathematics, University of Cambridge.

Euclid (300 B.C.).
Elements.
Various, Alexandria, Egypt.

Tao, T. (2024).
Machine assisted proof.
San Francisco, California. 2024 Joint Mathematics Meetings.
https://youtu.be/AayZuuDDKP0.

Felix Bradley Intro to Type Theory 28 February 2024


	A Brief History of Types
	Simply Typed Lambda Calculus
	The Curry-Howard Correspondence
	Summary

